Calibration of the oscillation amplitude of electrically excited scanning probe microscopy sensors

2019 
Atomic force microscopy (AFM) is an analytical surface characterization tool which can reveal a sample’s topography with high spatial resolution while simultaneously probing tip-sample interactions. Local measurement of chemical properties with high-resolution has gained much popularity in recent years with advances in dynamic AFM methodologies. A calibration factor is required to convert the electrical readout to a mechanical oscillation amplitude in order to extract quantitative information about the surface. We propose a new calibration technique for the oscillation amplitude of electrically driven probes using the principle of energy balance. Our technique relies on the measurement of the energy input to maintain the oscillation amplitude constant. With the measurement of the energy input to the probe, a mechanical oscillation amplitude is calculated and a calibration factor to convert the electrical readout in volts to a mechanical oscillation amplitude in Angstroms is obtained. We demonstrate the ap...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    8
    Citations
    NaN
    KQI
    []