Hardware Multiversioning for Fail-Operational Multithreaded Applications

2020 
Modern safety-critical embedded applications like autonomous driving need to be fail-operational. At the same time, high performance and low power consumption are demanded. A common way to achieve this is the use of heterogeneous multi-cores. When applied to such systems, prevalent fault tolerance mechanisms suffer from some disadvantages: Some (e.g. triple modular redundancy) require a substantial amount of duplication, resulting in high hardware costs and power consumption. Others (e.g. lockstep) require supplementary checkpointing mechanisms to recover from errors. Further approaches (e.g. software-based process-level redundancy) cannot handle the indeterminism introduced by multithreaded execution. This paper presents a novel approach for fail-operational systems using hardware transactional memory, which can also be used for embedded systems running heterogeneous multi-cores. Each thread is automatically split into transactions, which then execute redundantly. The hardware transactional memory is extended to support multiple versions, which allows the reproduction of atomic operations and recovery in case of an error. In our FPGA-based evaluation, we executed the PARSEC benchmark suite with fault tolerance on 12 cores.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    1
    Citations
    NaN
    KQI
    []