Two new HATNet hot Jupiters around A stars, and the first glimpse at the occurrence rate of hot Jupiters from TESS.

2019 
Wide field surveys for transiting planets are well suited to searching diverse stellar populations, enabling a better understanding of the link between the properties of planets and their parent stars. We report the discovery of HAT-P-69 b (TOI 625.01) and HAT-P-70 b (TOI 624.01), two new hot Jupiters around A stars from the HATNet survey which have also been observed by the Transiting Exoplanet Survey Satellite (TESS). HAT-P-69 b has a mass of 3.73 (+0.61/-0.59) Mjup and a radius of 1.626 (+0.032/-0.025) Rjup, and is in a prograde 4.79-day orbit around a star of mass 1.698+/-0.025 Msun and radius 1.854 (+0.043/-0.022) Rsun. HAT-P-70 b has a radius of 1.87 (+0.15/-0.10) Rjup and a mass constraint of <6.78 (3sigma) Mjup, and is in a retrograde 2.74-day orbit around a star of mass 1.890 (+0.010/-0.013) Msun and radius 1.858 (+0.119/-0.091) Rsun. We use the confirmation of these planets around relatively massive stars as an opportunity to explore the occurrence rate of hot Jupiters as a function of stellar mass. We define a sample of 47,126 main-sequence stars brighter than Tmag=10 that yields 31 giant planet candidates, including 18 confirmed planets, 3 candidates, and 10 false positives. We find a net hot Jupiter occurrence rate of 0.45+/-0.10% within this sample, consistent with the rate measured by Kepler for FGK stars. When divided into stellar mass bins, we find the occurrence rate to be 0.71+/-0.31% G stars, 0.43+/-0.15% for F stars, and 0.32+/-0.12% for A stars. Thus, at this point, we cannot discern any statistically significant trend in the occurrence of hot Jupiters with stellar mass.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    171
    References
    16
    Citations
    NaN
    KQI
    []