Proteomic and metabolomic analysis of marine medaka (Oryzias melastigma) after acute ammonia exposure

2018 
Ammonia is both a highly toxic environmental pollutant and the major nitrogenous waste produced by ammoniotelic teleosts. Although the acute toxic effects of ammonia have been widely studied in fish, the biochemical mechanisms of its toxicity have not been understood comprehensively. In this study, we performed comparative proteomic and metabolomic analysis between ammonia-challenged (1.2 and 2.6 mmol L−1 NH4Cl for 96 h) and control groups of marine medaka (Oryzias melastigma) to identify changes of the metabolite and protein profiles in response to ammonia stress. The metabolic responses included changes of multiple amino acids, carbohydrates (glucose and glycogen), energy metabolism products (ATP and creatinine), and other metabolites (choline and phosphocholine) after ammonia exposure, indicating that ammonia mainly caused disturbance in energy metabolism and amino acids metabolism. The two-dimensional electrophoresis-based proteomic study identified 23 altered proteins, which were involved in nervous system, locomotor system, cytoskeleton assembly, immune stress, oxidative stress, and signal transduction of apoptosis. These results suggested that ammonia not only induced oxidative stress, immune stress, cell injury and apoptosis but also affected the motor ability and central nervous system in marine medaka. It is the first time that metabolomic and proteomic approaches were integrated to elucidate ammonia toxicity in marine fishes. This study is of great value in better understanding the mechanisms of ammonia toxicity in marine fishes and in practical aspects of aquaculture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    13
    Citations
    NaN
    KQI
    []