Kinetics and Mechanism of Growth of β-Solid Solution during Reaction Diffusion in Binary Titanium and Zirconium Alloy Systems

2008 
High temperature beta-phase in titanium and zirconium alloy systems decomposes through an eutectoid reaction into a Ti- and Zr-rich a-solid solution and an intermetallic compound. The present paper reports the layer growth kinetics of the b-solid solution phase in elemental diffusion couples of titanium and zirconium. The growth kinetics obeys a parabolic growth law. However, the temperature dependence of the growth rate constant shows a bimodal behavior. The Arrhenius plot of the growth rate constant, which is linear at the start, becomes curved at lower temperature ranges. The deviation from the Arrhenius plot of the growth rate constant is related to the curvature in the solvus line of the b-solid solution. A theoretical model for the reaction diffusion responsible for the growth of b-solid solution is presented. The growth rate of b-phase is described by the equation 2 2 . . W k D C t b = = b D x , where k is a growth rate constant and Wb is the thickness of the b-phase formed over a period of time t, Db is the interdiffusion coefficient for the b-phase, DC is concentration range of b-phase and x is a parameter which is a function of the miscibility gaps in the phase diagram on the either side of the b-phase. The above equation provides a satisfactory description of the various aspect of the phenomenon of the growth of b-phase in Ti-and Zr-alloy systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []