Magnetization beyond the Ising limit of Ho$_2$Ti$_2$O$_7$

2019 
We report that the local Ising anisotropy in pyrochlore oxides - the crucial requirement for realizing the spin-ice state - can be broken by means of high magnetic fields. For the case of the well-established classical spin-ice compound Ho$_2$Ti$_2$O$_7$ the magnetization exceeds the angle-dependent saturation value of the Ising limit using ultra-high fields up to 120 T. However, even under such extreme magnetic fields full saturation cannot be achieved. Crystal-electric-field calculations reveal that a level crossing for two of the four ion positions leads to magnetization steps at 55 and 100 T. In addition, we show that by using a field sweep rate in the range of the spin-relaxation time the dynamics of the spin system can be probed. Exclusively at 25 ns/T a new peak of the susceptibility appears around 2 T. We argue, this signals the cross-over between spin-ice and polarized correlations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    2
    Citations
    NaN
    KQI
    []