Efficient and Private Divisible Double Auction in Trusted Execution Environment

2021 
Auction mechanisms for exchanging divisible resources (e.g., electricity, cloud resources, and network bandwidth) among distributed agents have been extensively studied. In particular, divisible double auction allows both buyers and sellers to dynamically submit their prices until convergence. However, severe privacy concerns may arise in the double auctions since all the agents may have to disclose their sensitive data such as the bid profiles (i.e., bid amounts and prices in different iterations) to other agents for resource allocation. To address such concerns, we propose an efficient and private auction system ETA by co-designing the divisible double auction mechanism with the Intel SGX, which executes the computation for auction while ensuring confidentiality and integrity for the buyers/sellers’ sensitive data. Furthermore, ETA seals the bid profiles to achieve a Progressive Second Price (PSP) auction for optimally allocating divisible resources while ensuring truthfulness with a Nash Equilibrium. Finally, we conduct experiments to validate the performance of private auction system ETA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []