Indirectly Detected DNP-Enhanced 17O NMR Spectroscopy: Observation of Non-Protonated Near-Surface Oxygen at Naturally Abundant Silica and Silica-Alumina.

2021 
Recent studies have shown that dynamic nuclear polarization (DNP) can be used to detect 17 O solid-state NMR spectra of naturally abundant samples within a reasonable experimental time. Observations using indirect DNP, which relies on 1 H mediation in transferring electron hyperpolarization to 17 O, are currently limited mostly to hydroxyls. Direct DNP schemes can hyperpolarize non-protonated oxygen near the radicals; however, they generally offer much lower signal enhancements. In this study, we demonstrate the detection of signals from non-protonated 17 O in materials containing silicon. The sensitivity boost that made the experiment possible originates from three sources: indirect DNP excitation of 29 Si via protons, indirect detection of 17 O through 29 Si nuclei using two-dimensional 29 Si{ 17 O} D -HMQC, and Carr-Purcell-Meiboom-Gill refocusing of 29 Si magnetization during acquisition. This 29 Si-detected scheme enabled, for the first time, 2D 17 O- 29 Si heteronuclear correlation spectroscopy in mesoporous silica and silica-alumina surfaces at natural abundance. In contrast to the silanols showing motion-averaged 17 O signals, the framework oxygens exhibit unperturbed powder patterns as unambiguous fingerprints of surface sites. Along with hydroxyl oxygens, detection of these moieties will help in gaining more atomistic-scale insights into surface chemistry.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []