Efficiency enhancement of green quantum-dot light-emitting diode with novel hole-transporting material

2021 
Lots of attentions owing to its superior properties such as narrow electroluminescence (EL) spectra, tunable emission colors, high luminance, and simple fabrication process. Typically, in a QLED, quantum dots (QD) layer is sandwiched by organic materials as hole transporting layer (HTL) and inorganic zinc oxide (ZnO) nanoparticles as electron transporting layer (ETL), respectively. Because the electron mobility of ZnO is typical higher than the hole mobility of organic material, it results in carrier unbalance and reduces the efficiency. Hence, it is important to improve the hole transporting ability to achieve charge balance condition for higher efficiency. In this study, we have fabricated green QLEDs with two different HTL materials. By using HTL with high mobility and suitable energy level, voltage decreased from 11.1 V to 5.8 V at 10 mA/cm2, together with enhancement of current efficiency from 21.8 cd/A to 58.1 cd/A, and external quantum efficiency from 5.94% to 16.0%, corresponding to 2.6-times improvement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []