Controllably synthesized sugar-coated haws-sticklike Au/ZrO2 nanofibers for enhanced cataluminescence in propanal detection

2021 
Abstract Novel sugar-coated haws-sticklike Au/ZrO2 nanofibers were fabricated by a solvothermal method using a simple precipitation approach. The nanostructure, surface morphology, and elementary composition of the Au/ZrO2 nanofibers were explored by X-ray diffractometry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption isotherms, and energy dispersive spectroscopy. The unique sugar-coated haws sticklike structure with multiple crystal faces (111) as active sites enhanced greatly cataluminescence property for propanal, and the developed propanal sensor based on Au/ZrO2 nanofibers demonstrated good analytical characteristics with super-fast detection, high sensitivity, and selectivity. The response and recovery time were 1 and 5 s, respectively, the useable linear range was 0.181 – 38.8 mg/m3 with a low limit of detection of 0.060 mg/m3, and the stability was proved to be fairly excellent for at least 120 days. Besides, the sensor was successfully applied to the analysis of propanal in real samples, and satisfactory recoveries (90.1–109%) with RSDs of 2.6–8.4% were achieved. Moreover, the cataluminescence sensing mechanism was further investigated by density functional theory and GC/MS analysis. The developed methodology has broad application prospects for the detection of propanal at low concentrations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []