Spatial Metabolomics of the Human Kidney using MALDI Trapped Ion Mobility Imaging Mass Spectrometry.

2020 
Low molecular weight metabolites are essential for defining the molecular phenotypes of cells. However, spatial metabolom-ics tools often lack the sensitivity, specify, and spatial resolution to provide comprehensive descriptions of these species in tissue. MALDI imaging mass spectrometry (IMS) of low molecular weight ions is particularly challenging as MALDI ma-trix clusters are often nominally isobaric with multiple metabolite ions, requiring high resolving power instrumentation or derivatization to circumvent this issue. An alternative to this is to perform ion mobility separation before ion detection, ena-bling the visualization of metabolites without the interference of matrix ions. Additional difficulties surrounding low weight metabolite visualization include high resolution imaging, while maintaining sufficient ion numbers for broad and representa-tive analysis of the tissue chemical complement. Here, we use MALDI timsTOF IMS to image low molecular weight me-tabolites at higher spatial resolution than most metabolite MALDI IMS experiments (20 µm) while maintaining broad cov-erage within the human kidney. We demonstrate that trapped ion mobility spectrometry (TIMS) can resolve matrix peaks from metabolite signal and separate both isobaric and isomeric metabolites with different distributions within the kidney. The added ion mobility data dimension dramatically increased the peak capacity for spatial metabolomics experiments. Through this improved sensitivity, we have found >40 low molecular weight metabolites in human kidney tissue such as arginic acid, acetylcarnitine, and choline that localize to the cortex, medulla, and renal pelvis, respectively. Future work will involve further exploring metabolomic profiles of human kidneys as a function of age, gender, and ethnicity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    16
    Citations
    NaN
    KQI
    []