Development of 6′-N-Acylated Isepamicin Analogs with Improved Antibacterial Activity against Isepamicin-Resistant Pathogens

2020 
The development of new aminoglycoside (AG) antibiotics has been required to overcome the resistance mechanism of AG-modifying enzymes (AMEs) of AG-resistant pathogens. The AG acetyltransferase, AAC(6′)-APH(2″), one of the most typical AMEs, exhibiting substrate promiscuity towards a variety of AGs and acyl-CoAs, was employed to enzymatically synthesize new 6′-N-acylated isepamicin (ISP) analogs, 6′-N-acetyl/-propionyl/-malonyl ISPs. They were all active against the ISP-resistant Gram-negative bacteria tested, and the 6′-N-acetyl ISP displayed reduced toxicity compared to ISP in vitro. This study demonstrated the importance of the modification of the 6′-amino group in circumventing AG-resistance and the potential of regioselective enzymatic modification of AG scaffolds for the development of more robust AG antibiotics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []