Quantum dot encapsulated nanocolloidal bioconjugates function as bioprobes for in vitro intracellular imaging

2019 
Abstract Bioimaging probes incorporating quantum dots (QDs) are important for identifying organelles and monitoring their movement/location in living cells. Organelle specificity can be accomplished by functionalizing probe surfaces with chemical groups that can react with antibodies capable of targeting specific organelle-protein epitopes. Here, such a bioprobe is generated by encapsulating ZnS-capped CdSe QDs within polystyrene (PS) nanocolloids via Pickering miniemulsion using laponite nanoclay platelets as solid-stabilizers. The surfaces of these platelets are modified with aminopropyltriethoxysilane (APTES), and biotinylated by reacting sulfo-NHS-Biotin via the APTES amine group. Surface functionalization and bioconjugation are confirmed using X-ray photoelectron spectroscopy. The number of sites available on Streptavidin for Biotin binding is determined using a competitive HABA assay to optimize the bioconjugation protocol. The PS-encapsulated QDs (PS-QDs) nanocolloids are 50–200 nm in diameter and colloidally stable, as evidenced by transmission electron microscopy and ζ-potential measurements, respectively. Spherical particle shape is confirmed by scanning electron microscopy. Transmission electron microscopy also showed the nanoclay platelets on the surface of QD-encapsulating latex particles. The PS-QDs particles are easily dispersed in water and exhibit long-term photostability over various conditions. Cell viability of >95% is observed for NIH-3T3 cells after 72-h exposure to PS-QDs nanocolloids, with no cytotoxicity to living cells, even at 0.1 mg mL −1 . NIH-3T3 cellular uptake and internalization are confirmed by confocal microscopy, with PS-QDs fluorescence within cells remaining high even after 24-h exposure, demonstrating the applicability of PS-QDs nanocolloids as long-lived fluorescent bioprobes for in vitro intracellular imaging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    4
    Citations
    NaN
    KQI
    []