Thin-Film Preparation and Characterization of Cs3Sb2I9: A Lead-Free Layered Perovskite Semiconductor

2015 
Computational, thin-film deposition, and characterization approaches have been used to examine the ternary halide semiconductor Cs3Sb2I9. Cs3Sb2I9 has two known structural modifications, the 0-D dimer form (space group P63/mmc, no. 194) and the 2-D layered form (P3m1, no. 164), which can be prepared via solution and solid-state or gas-phase reactions, respectively. Our computational investigations suggest that the layered form, which is a one-third Sb-deficient derivative of the ubiquitous perovskite structure, is a potential candidate for high-band gap photovoltaic (PV) applications. In this work, we describe details of a two-step deposition approach that enables the preparation of large grain (>1 μm) and continuous thin films of the lead-free layered perovskite derivative Cs3Sb2I9. Depending on the deposition conditions, films that are c-axis oriented or randomly oriented can be obtained. The fabricated thin films show enhanced stability under ambient air, compared to methylammonium lead(II) iodide per...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    444
    Citations
    NaN
    KQI
    []