Influence of Discharge Current, Pressure, and Magnetic Field on the Spatial Distribution of Particles and Fluxes in the Dusty Plasma of the Positive Column of DC Glow Discharge

2021 
In the present work, a numerical study of the influence of discharge current, gas pressure, and axial magnetic field on the formation of the spatial distributions of parameters of a dusty argon plasma of the positive column of a dc glow discharge is reported. It is found that an increase in current, pressure, or magnetic field enhances the degree of dust influence on the spatial distribution of particles and on the fluxes in the plasma and can lead to the implementation of a variety of outcomes from the flattening of the radial density profile of charged particles to the formation of uniform and even nonmonotonic radial distributions with the reversal of the ambipolar field direction. Three different modes of transition to nonmonotonic radial density profiles, depending on the parameter being changed, are reported.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    1
    Citations
    NaN
    KQI
    []