Effect of Internal Heteroatoms on Level Alignment at Metal/Molecular Monolayer/Si Interfaces

2018 
Molecular monolayers at metal/semiconductor heterointerfaces affect electronic energy level alignment at the interface by modifying the interface’s electrical dipole. On a free surface, the molecular dipole is usually manipulated by means of substitution at its external end. However, at an interface such outer substituents are in close proximity to the top contact, making the distinction between molecular and interfacial effects difficult. To examine how the interface dipole would be influenced by a single atom, internal to the molecule, we used a series of three molecules of identical binding and tail groups, differing only in the inner atom: aryl vinyl ether (PhO), aryl vinyl sulfide (PhS), and the corresponding molecule with a CH2 group—allyl benzene (PhC). Molecular monolayers based on all three molecules have been adsorbed on a flat, oxide-free Si surface. Extensive surface characterization, supported by density functional theory calculations, revealed high-quality, well-aligned monolayers exhibiting...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    97
    References
    4
    Citations
    NaN
    KQI
    []