Immunomodulatory liposomes targeting liver macrophages arrest progression of nonalcoholic steatohepatitis

2018 
Abstract Objective Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic macrophage inflammation, steatosis and fibrosis. Liposomes injected intravenously passively target hepatic myeloid cells and have potential to deliver immunomodulatory compounds and treat disease. We investigated targeting, delivery, immunomodulation and efficacy of liposomes in mice with diet-induced NASH. Methods Liposome-encapsulated lipophilic curcumin or 1,25-dihydroxy-vitamin D3 (calcitriol) were injected intravenously into mice with diet-induced NASH. Liver and cell liposome uptake was assessed by in vivo imaging and flow cytometry. Immunomodulation of targeted cells were assessed by RNA transcriptome sequencing. NASH was assessed by histological scoring, serum liver enzymes and fasting glucose/insulin and liver RNA transcriptome sequencing. Results Liposomes targeted lipid containing MHC class-II + hepatic dendritic cells in mice and humans. Delivery of liposomal curcumin to hepatic dendritic cells shifted their inflammatory profile towards a regulatory phenotype. Delivery of liposomal curcumin or calcitriol to mice with diet-induced NASH led to reduced liver inflammation, fibrosis and fat accumulation, and reduced insulin resistance. RNA transcriptome sequencing of liver from treated mice identified suppression of pathways of immune activation, cell cycle and collagen deposition. Conclusions Liposomes are a new strategy to target lipid rich inflammatory dendritic cells and have potential to deliver immunomodulatory compounds to treat NASH.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    19
    Citations
    NaN
    KQI
    []