Modelling distributed crewing in commercial aircraft with STAMP for a rapid decompression hazard

2019 
AbstractChanges to crewing configurations in commercial airlines are likely as a means of reducing operating costs. To consider the safety implications for a distributed crewing configuration, system theoretic accident model and processes (STAMP) was applied to a rapid decompression hazard. High level control structures for current operations and distributed crewing are presented. The CONOPS generated by STAMP-STPA for distributed crewing, and design constraints associated with unsafe control actions (UCAs) are offered to progress in the route to certification for distributed crewing, and improve safety in current operations. Control loops between stakeholders were created using system-theoretic process analysis (STPA). The factors leading to the Helios 255 incident demonstrated the redundancy that a ground station could offer without the risk of hypoxia, during a decompression incident. STPA analysis also highlighted initial UCAs that could occur within the hypothetical distributed crewing configuration,...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    18
    Citations
    NaN
    KQI
    []