Rational Development of Remote C−H Functionalization of Biphenyl: Experimental and Computational Studies

2020 
A simple and efficient nitrile-directed meta-C-H olefination, acetoxylation, and iodination of biaryl compounds is reported. Compared to the previous approach of installing a complex U-shaped template to achieve a molecular U-turn and assemble the large-sized cyclophane transition state for the remote C-H activation, a synthetically useful phenyl nitrile functional group could also direct remote meta-C-H activation. This reaction provides a useful method for the modification of biaryl compounds because the nitrile group can be readily converted to amines, acids, amides, or other heterocycles. Notably, the remote meta-selectivity of biphenylnitriles could not be expected from previous results with a macrocyclophane nitrile template. DFT computational studies show that a ligand-containing Pd-Ag heterodimeric transition state (TS) favors the desired remote meta-selectivity. Control experiments demonstrate the directing effect of the nitrile group and exclude the possibility of non-directed meta-C-H activation. Substituted 2-pyridone ligands were found to be key in assisting the cleavage of the meta-C-H bond in the concerted metalation-deprotonation (CMD) process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    19
    Citations
    NaN
    KQI
    []