Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation

2019 
A progressive loss of protein homeostasis is characteristic of aging and a driver of neurodegeneration. To investigate this process quantitatively, we characterized proteome dynamics during brain aging by using the short-lived vertebrate Nothobranchius furzeri and combining transcriptomics, proteomics and thermal proteome profiling. We found that the correlation between protein and mRNA levels is progressively reduced during aging, and that post-transcriptional mechanisms are responsible for over 40% of these alterations. These changes induce a progressive stoichiometry loss in protein complexes, including ribosomes, which have low thermal stability in brain lysates and whose component proteins are enriched in aggregates found in old brains. Mechanistically, we show that reduced proteasome activity occurs early during brain aging, and is sufficient to induce loss of stoichiometry. Our work thus defines early events in the aging process that can be targeted to prevent loss of protein homeostasis and age-related neurodegeneration.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    8
    Citations
    NaN
    KQI
    []