A Bidirectional FSO Communication Employing Phase Modulation Scheme and Remotely Injection-Locked DFB LD

2020 
A bidirectional free-space optical (FSO) communication through a 600-m free-space transmission is built, employing a phase modulation (PM) scheme and a remotely injection-locked distributed feedback laser diode (DFB LD) for presentation. With optimum injection locking, a DFB LD is excellent for duplex transceiver operations. An injection-locked DFB LD not only operates as a PM-to-intensity modulation converter with an optical detector, but also functions as an upstream optical carrier. To be the first one of employing a remotely injection-locked DFB LD to detect a phase-modulated 25-Gb/s/25-GHz four-level pulse amplitude modulation (PAM4) passband signal, the DFB LD with remote injection locking is successfully intensity-modulated with an upstream 25-Gb/s non-return-to-zero (NRZ) signal. Good bit error rate performance and clear PAM4/NRZ eye diagrams show that this FSO communication can use a remotely injection-locked DFB LD to detect the downstream phase-modulated PAM4 signal and concurrently deliver an upstream intensity-modulated NRZ signal. This bidirectional 25-Gb/s/25-GHz (downstream)/25-Gb/s (upstream) FSO communication is prominent due to its enhancement in two-way high-speed optical wireless communications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []