The role of conjugated side chains in high performance photovoltaic polymers

2015 
Four new D–A type copolymers, namely, PBDT-DFQX-PP, PBDT-DFQX-TP, PBDT-DFQX-PT and PBDT-DFQX-TT, were designed and synthesized to investigate the influence of conjugated side chain pattern on photovoltaic properties of conjugated polymers. All the four copolymers have an identical conjugated backbone comprising benzo[1,2-b:4,5-b′]dithiophene (BDT) donor unit and quinoxaline (Qx) acceptor unit, but with varying conjugated side chains, p-alkoxyphenyl or 2-alkylthienyl, attached to the donor and acceptor units, respectively. As evidenced by UV/Vis absorption spectra, electrochemical cyclic voltammetry, density functional theory (DFT), grazing incidence X-ray scattering (GIXS), transmission electron microscope (TEM) and photovoltaic measurements, the difference in conjugated side chain modulation led to totally different physicochemical properties. Among the four copolymers, PBDT-DFQX-TT exhibits the broadest absorption spectrum, the most close-packed structure as well as a finest fibril structure when blended with PC71BM. After systematic device optimization, the power conversion efficiencies (PCEs) of the bulk heterojunction (BHJ) photovoltaic devices based on the blends of PBDT-DFQX-PP, PBDT-DFQX-TP, PBDT-DFQX-PT and PBDT-DFQX-TT with PC71BM achieved 3.96%, 6.08%, 6.54% and 7.68%, respectively. By systematic varying the side chains of the copolymers from all phenyl groups to all thienyl ones, PCEs was increased by 250% from 3.96% to 7.68%. To date, PBDT-DFQX-TT is one of a few Qx-based PSCs that exhibits PCE exceeding 7.5%, and the results suggest that simultaneously modulating the conjugated side chains on both donor and acceptor units of copolymers could be an effective strategy for constructing high performance photovoltaic copolymers.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    37
    Citations
    NaN
    KQI
    []