Map-based cloning of qBWT-c12 discovered brassinosteroid-mediated control of organ size in cotton

2019 
Abstract Assuring fiber yield stability is the primary objective for cotton breeders since the world population is on the rise, and the demand for cotton fiber is increasing every year. Thus, enhancing average cotton boll weight (BWT) could improve seed cotton production, and ultimately to increase cotton fiber yield. This study accomplished the map-based cloning of a novel boll weight regulating locus, qBWT-c12, in cotton. Bulk segregation analysis detected linked markers, aided in the detection of a stable BWT regulating locus, qBWT-c12, on Chr12 in a novel boll size mutant, BS41. Progeny evaluation confined the qBWT-c12 to a 0.89 cM interval between the AD-A12_07 and AD-FM_44 markers in recombinant derived F3 and F4 populations. Homology mapping detected a 40 bp insertion-deletion (InDel) site in the AD-FM_44 clone sequence situated +341 downstream of GhBRH1_A12, which showed complete linkage to the BWT phenotype. The suppressed expression of GhBRH1_A12 suggested its putative involvement during early boll development events in BS41. Although brassinosteroid (BR) biosynthesis and signaling pathway genes were up regulated in different tissues, but the organ growth was suppressed leading to dwarf plants, smaller leaves, and de-morphed smaller bolls in BS41. Thus, a disruption in the BR signal cascade is anticipated and could be related to lower GhBRH1_A12 expression in BS41.This study firstly reported the genetic dissection of boll size regulation of G. barbadense in G. hirsutum background using map-based cloning of a BWT regulating locus, qBWT-c12. Moreover, it also emphasized the putative role GhBRH1_A12 in regulating BR homeostasis and its potential to modulate plant growth and boll development in cotton.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    3
    Citations
    NaN
    KQI
    []