Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: Modeling, kinetics, equilibriums and reusability studies.

2021 
Abstract In this study calcium alginate-multiwall carbon nanotube (CA/MWCNTs) was synthesized using (CA) calcium alginate and multiwall carbon nanotube (MWCNTs), and its efficiency in adsorption of 4-Nitrophenol (4-NP) in aqueous solution was studied. The structure and properties of the synthesized adsorbent were investigated using scanning electron microscope (SEM), thermal gravimetric analysis (TGA), Fourier transform infrared (FTIR), and X-ray diffraction (XRD). The experimental design was performed using Box–Behnken design (BBD) in which variables pH, CA/MWCNTs, and temperature were examined. The results of the effect of temperature on the removal efficiency of 4-NP showed that the adsorption efficiency decreases with increasing temperature. The results of nonlinear isotherm and kinetics models showed that Langmuir and pseudo-second-order models were more consistent than other models. The maximum adsorption capacity of 4-NP in this study by CA, MWCNTs, and CA/MWCNTs was 136, 168.4, and 58.8 mg/g, respectively, which indicates that the use of MWCNTs on CA could increase the adsorption capacity. The results of reuse of the synthesized adsorbent at 4-NP removal also showed that after 5 reuse of the adsorbent, the removal of 4-NP using CA/MWCNTs is reduced by about 10%, which shows that the synthesized adsorbent can be used several times to adsorb contaminants without significant reduction in the efficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    1
    Citations
    NaN
    KQI
    []