Effects of plant enzyme inactivation or sterilization on lipolysis and proteolysis in alfalfa silage

2013 
Abstract This experiment studied the contribution of plant enzymes and microbial activity on lipolysis and proteolysis in ensiled alfalfa. Before ensiling, the wilted alfalfa was treated with plant enzyme inactivation by autoclaving or with sterilization by γ-ray irradiation. The treated alfalfa was then inoculated with commercial lactic acid bacteria inoculants and ensiled for 40 d. Alfalfa without treatment was ensiled as the control. The content of total fatty acid (FA) after ensiling decreased 43% in the control silage and 28% in the γ-ray–treated silage, but did not change in the autoclave-treated silage. Among the major FA (C16:0, C18:2n-6, C18:3n-3), a considerable increase was observed in proportion of C16:0 in the control silage as compared with fresh alfalfa; conversely, decreases in proportions of C18:2n-6 and C18:3n-3 occurred during ensilage. Silage treated with γ-ray radiation at ensiling had a smaller proportion of C16:0 and greater proportions of C18:2n-6 and C18:3n-3 than control silage. Autoclave treatment further decreased proportions of C16:0 and most of the other FA, and increased C18:2n-6 and C18:3n-3 proportions in comparison with γ-ray treatment. Proportions of C16:0, C18:2n-6, C18:3n-3 and other detected FA (except for the proportion of C15:0) did not differ between fresh forage and autoclave-treated silage. Remarkably, smaller nonprotein nitrogen content was observed in the autoclave-treated silage compared with the γ ray-treated silage or the control silage. These results indicated that an extensive lipolysis occurred during ensiling of alfalfa, and plant enzymes played a major role in lipolysis and proteolysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    36
    Citations
    NaN
    KQI
    []