Super-enhancer impairment is a link between MLL4-inactivated lung tumors and their vulnerability to glycolysis pathway inhibition

2018 
Epigenetic modifiers often harbor loss-of-function mutations in lung cancer, but their tumor-suppressive roles are poorly characterized. Here we show that lung-specific loss of the gene encoding the histone methyltransferase MLL4 (alias KMT2D; a COMPASS-like enzyme), which is ranked the most highly inactivated epigenetic modifier in lung cancer, strongly promotes lung adenocarcinoma in mice. Mll4 loss upregulated tumor-promoting programs, including glycolysis. The pharmacological inhibition of glycolysis preferentially impeded tumorigenic growth of human lung cancer cells bearing MLL4-inactivating mutations. Mll4 loss widely impaired epigenomic signals for super-enhancers and enhancers, including the super-enhancer for the circadian rhythm repressor gene Per2, and decreased Per2 expression. Per2 downregulated several glycolytic pathway genes. These findings uncover a distinct tumor-suppressive epigenetic mechanism in which MLL4 enhances Per2-mediated repression of pro-tumorigenic glycolytic genes via super-enhancer activation to suppress lung adenocarcinoma tumorigenesis and also implicate a glycolysis-targeting strategy as a therapeutic intervention for the treatment of MLL4-mutant lung cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []