Modelling the transmission and control strategies of varicella among school children in Shenzhen, China

2017 
Objectives Varicella (chickenpox) is a highly transmissible childhood disease. Between 2010 and 2015, it displayed two epidemic waves annually among school populations in Shenzhen, China. However, their transmission dynamics remain unclear and there is no school-based vaccination programme in Shenzhen to-date. In this study, we developed a mathematical model to compare a school-based vaccination intervention scenario with a baseline (i.e. no intervention) scenario. Methods Data on varicella reported cases were downloaded from the Infectious Disease Reporting Information Management System. We obtained the population size, age structure of children aged 15 or under, the class and school distribution from Shenzhen Education Bureau. We developed an Agent-Based Susceptible-Exposed-Infectious-Recovered (ABM-SEIR) Model that considered within-class, class-to-class and out-of-school transmission modes. The intervention scenario was that school-wide vaccination intervention occurred when an outbreak threshold was reached within a school. We varied this threshold level from five to ten cases. We compared the reduction of disease outbreak size and estimated the key epidemiological parameters under the intervention strategy. Results Our ABM-SEIR model provided a good model fit to the two annual varicella epidemic waves from 2013 to 2015. The transmission dynamics displayed strong seasonality. Our results suggested that a school-based vaccination strategy could effectively prevent large outbreaks at different thresholds. Conclusions There was a considerable increase in reported varicella cases from 2013 to 2015 in Shenzhen. Our modelling study provided important theoretical support for disease control decision making during school outbreaks and the development of a school-based vaccination programme.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    8
    Citations
    NaN
    KQI
    []