Abstract 3899: Discovery and clinical implementation of individualized therapies in acute myeloid leukemia based on ex vivo drug sensitivity testing and multi-omics profiling

2018 
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by multiple molecular subtypes and lack of effective targeted therapies. Here, we performed extensive molecular profiling and ex vivo drug testing with 515 approved and emerging cancer drugs on 164 AML patient samples. The aim was to i) assign individualized treatment options to advanced AML patients in real time, ii) explore drug response patterns across the molecular subtypes of AML and iii) identify opportunities to repurpose existing and emerging cancer drugs. Bone marrow samples (n=164) from 129 consecutive AML patients and 17 healthy donors were studied from the Helsinki University Hospital and the Haukeland University Hospital, Bergen. Mononuclear cells were resuspended either in mononuclear cell medium (MCM) or stroma conditioned medium (CM) and tested for drug sensitivity and resistance as previously described (PMID: 24056683) and studied by exome and transcriptome sequencing. The study protocol allowed us to return data to the clinician for consideration of novel treatment options. For the meta-analysis of associations between drug responses and molecular and clinical parameters, Wilcoxon signed ranked test and logistic regression were applied. Clustering of all patient samples based on ex vivo drug response patterns in both media types identified 7 distinct functional groups of AML. For example, a subgroup of samples was highly resistant to chemotherapeutics and all targeted drugs except BCL-2 inhibitors. The differences in drug responses in the two media types highlighted the importance of assay conditions for ex vivo drug testing. Strong clustering of several drugs in the same drug classes was often observed as well as clustering across different classes, for example between BET (JQ1, I-BET151, birabresib) and MEK (trametinib, cobimetinib) inhibitors. About 24 percent of the FLT3 negative AML patients manifested strong ex vivo sensitivity to glucocorticoids, highlighting a potential drug repositioning opportunity in this subset of AML patients. Overall, we identified 320 significant associations between drugs and mutated driver genes including association between NPM1 mutation and sensitivity to JAK inhibitors. Altogether, targeted treatment opportunities were clinically tested in 25 occasions in chemorefractory AML patients. The tailored clinical therapy led to transient complete remission or leukemia free state in 36% (9/25) of these cases. In conclusion, we discovered and clinically implemented individualized therapeutic options for AML patients, which resulted in a 36% clinical responses in a non-randomized proof-of-concept study. The associations identified between ex-vivo drug response and driver mutations provided novel drug repositioning opportunities in specific molecular subtypes. Citation Format: Disha Malani, Ashwini Kumar, Bhagwan Yadav, Mika Kontro, Swapnil Potdar, Oscar Bruck, Sari Kytola, Jani Saarela, Samuli Eldfors, Poojitha Ojamies, Karjalainen Riikka, Muntasir Mamun Majumder, Imre Vastrik, Pekka Ellonen, Matti Kankainen, Minna Suvela, Siv Knappila, Alun Parson, Aino Palva, Pirkko Mattila, Evgeny Kulesskiy1, Laura Turunen, Karoliina Laamanen, Elina Lehtinen, Piia Mikkonen, Maria Nurmi, Sanna Timonen, Astrid Murumagi, Bjorn Tore Gjersten, Satu Mustjoki, Tero Aittokallio, Krister Wennerberg, Simon Anders, Maija Wolf, Caroline Heckman, Kimmo Porkka, Olli Kallioniemi. Discovery and clinical implementation of individualized therapies in acute myeloid leukemia based on ex vivo drug sensitivity testing and multi-omics profiling [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3899.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []