New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin

2019 
Highlights • New 40Ar/39Ar age and geochemical (major, trace element, Sr-Nd-Pb-Hf isotope) data are presented from the Walvis Ridge, belonging to the Tristan-Gough hotspot track in the South Atlantic. • The entire Tristan-Gough hotspot system, including Walvis Ridge, display a spatially continuous age progression. • The Gough-type component is the dominant geochemical flavor of the Tristan-Gough plume and has also been identified in the Discovery and Shona hotspot systems. • The geochemical heterogeneity in the South Atlantic DUPAL region can be reproduced by mixing of Gough-type enriched mantle with continental crust and a FOZO/PREMA-like component. • The HIMU-type alkalic lavas on the Walvis Ridge and older part of Shona hotspot track are ∼30 Ma younger in age than the EMI-type primarily tholeiitic basement lavas at a given locality. Abstract Long-lived spatial geochemical zonation of the Tristan-Gough and Discovery hotspot tracks and temporal variations from EMI-type basement to HIMU-type late-stage volcanism at the Walvis Ridge and Shona hotspot tracks point to a complex evolution and multiple source areas for the South Atlantic hotspots. Here we report 40Ar/39Ar age and geochemical (major and trace element, Sr-Nd-Pb-Hf isotope) data for samples from 16 new sites on the Walvis Ridge. This aseismic ridge is the oldest submarine expression of the Tristan-Gough mantle plume and represents the initial reference locality of the EMI end member in the South Atlantic Ocean. The EMI-type lavas display an excellent age progressive trend of ∼31 mm/a along the entire Tristan-Gough hotspot track, indicating constant plate motion over a relatively stationary melt anomaly over the last ∼115 Ma. The Gough-type EMI composition of the Tristan-Gough hotspot track is the dominant composition on the >70 Ma part of the Walvis Ridge, the Etendeka and Parana flood basalts, and along the Gough sub-track, extending from DSDP Site 525A on the SW Walvis Ridge to Gough Island, whereas Tristan-type EMI dominates on the Tristan Track, extending from DSDP Sites 527 and 528 to Tristan da Cunha Island. Gough-type EMI is also the dominant composition of the northern Discovery and Shona hotspot tracks, suggesting that these hotspots tap a common source reservoir. The continuous EMI-type supply over ≥132 Ma, coupled with high 3He/4He (>10 RA), points to a deep-seated reservoir for this mantle material. The Tristan and Southern Discovery EMI-type flavors can be reproduced by mixing of the Gough-type component with (1) FOZO/PREMA to produce Tristan-type lavas, and (2) marine sediments or upper continental crust to generate the Southern Discovery-type composition. South Atlantic hotspots with EMI-type compositions overlie the margin (1 % ∂Vs velocity contour) of the African Large Low Shear Velocity Province (LLSVP), which may promote the emergence of geochemical “zonation”. The St. Helena HIMU-type volcanism, however, is located above internal portions of the LLSVP, possibly reflecting a layered LLSVP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    121
    References
    16
    Citations
    NaN
    KQI
    []