Simultaneous Separation and Immobilization of Cr(VI) from Layered Double Hydroxide via Reconstruction of the Key Phases

2021 
ABSTRACT Layered double hydroxide (LDH) is one of the key host phases of Cr(VI) in the natural environment and chromite ore processing residue (COPR), causing serious pollution by Cr(VI). Therefore, efficient extraction or immobilization of the incorporated Cr(VI) in LDH is urgently needed. In this work, simultaneous separation and immobilization of Cr(VI) in LDH by using MgCl2·6H2O under thermal treatment is innovatively proposed. Cr was volatilized as CrCl3 and was immobilized as MgCr2O4 accounted for 62.2% and 37.8%, respectively, under the optimal condition (the mole ratio of Cl/Cr is 9, 700 °C and 120 min). The underlying reaction mechanisms are as follows: (i) HCl produced by MgCl2·6H2O accelerates the destruction of Cr(VI)-LDH layer structure, completely exposing the incorporated Cr(VI), (ii) Cr(VI) is reduced to Cr(III) by Cl-, part of which is directly immobilized as MgCr2O4, and the other part generates CrCl3, which is volatilized or further combined with Mg2+ to form MgCr2O4. The total Cr leaching concentration of the practical COPR sample treated by this method dramatically decreases from 421 to 0.7 mg/L, well below the landfill standard limit (4.5 mg/L). This work provides an attainable strategy for thorough remediation of COPR and inspires the treatment of heavy metal-containing LDH.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    1
    Citations
    NaN
    KQI
    []