Performance Prediction of a Two-bed Solar Adsorption Chiller with Adaptive Cycle time using a MIL-100(Fe)/Water Working Pair – Influence of Solar Collector Configuration

2018 
Abstract The simulation studies of conventional small-scale adsorption chillers reported so far in literature incorporate a pre-determined user-defined cycle time which remains constant with the increasing number of cycles. This study presents the first attempt of the numerical simulation of a two-bed solar adsorption chiller with “adaptive” cycle time based on the temporal variations of temperatures and pressures existing inside the beds, the evaporator and the condenser. A water-stable metal organic framework (MOF), MIL-100(Fe), has been selected as the adsorbent while water has been chosen as the refrigerant. A flat-plate solar collector with three different glaze configurations, namely single-glazed (S-G), double-glazed (D-G) and single-glazed with transparent insulation material (TIM), has been employed. The performance of the two-bed adsorption chiller has been evaluated in terms of the variations of the specific cooling power ( SCP ), the coefficient of performance ( COP ) and the solar coefficient of performance ( COP sc ) with increasing number of cycles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    3
    Citations
    NaN
    KQI
    []