Geological Controls on Mineralogical Characteristic Differences of Coals from the Main Coal Fields in Shaanxi, North China

2021 
Shaanxi is among the provinces with abundant coal resources in North China. These enormous coal resources (approx. 4143 Gt) are widely distributed in the Ordos Basin and its marginal fold belts. The main coal-bearing strata consist of the late Carboniferous Taiyuan Formation, the early Permain Shanxi Formation, the late Triassic Wayaobao Formation, and the middle Jurassic Yan’an Formation, which were respectively deposited in coastal plains and a lagoon environment, a continental environment, an inland open lake and a confined lake environment. The Permo-Carboniferous coals are low volatile bituminous and characterized by relatively high vitrinite content, which decreases from south to north, and from the lower coal seams upwards. By contrast, the late Triassic and middle Jurassic coals are highly volatile bituminous, but are respectively characterized by relatively high vitrinite and high inertinite content. Minerals in the Permo-Carboniferous coals, the late Triassic coals, and the middle Jurassic coals, are respectively dominated by kaolinite and calcite, quartz and kaolinite, and quartz and calcite. Furthermore, contemporary coals deposited in different coal fields or even different mines of the same coal field present different mineral characteristics. The Permain Shanxi Formation coals from the Shanbei C-P coalfield in the north of Shaanxi Province are characterized by higher kaolinite and lower carbonate contents compared to those from the Weibei C-P coalfield in the south of Shaanxi Province. The distinctive mineralogical characteristics of coals formed in different coalfields and different geological ages were ascribed to integrated influences of different terrigenous detrital input from sediment provenance, sedimentary settings (e.g., subsidence rate, sea transgression, and regression process), and hydrothermal activities.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []