Computational Fluid Dynamics Analysis of the Stall Characteristics of a Wing Design Based on Prandtl's Minimum Induced Drag

2018 
Stall characteristics of a wing whose design was based on Prandtl’s minimum induced drag analysis is presented. Flow field is resolved using RANS CFD (Computational Fluid Dynamics) solver OVERFLOW-2. Both in freestream and in ground effect are analyzed. In addition, effect of low-Mach preconditioner on the stall characteristic is presented. Results show that simulations that lack preconditioner predicts higher stall angle as well as much more benign behavior near the stall angle. Stall analysis in freestream show that flow begins to separate at the inboard region. The flow at the tip remains attached until approximately 19.0 degrees angle of attack.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []