Effect of Al3+ ions substitution in novel zinc phosphate glasses on formation of HAp layer for bone graft applications

2019 
Abstract Aluminium doped phosphate based bioglasses have potential applications in the field of bone tissue engineering because of their excellent bioactivity and biocompatibility along with high mechanical strength and controlled dissolution. In the present study, 8ZnO–22Na2O–(24-x)CaO–46P2O5–xAl2O3 (where x = 0, 2, 4, 6, 8 and 10 mol%) glass system was synthesized and investigated by means of XRD, FTIR, SEM and EDS before and after immersion in SBF for 3, 7, 14 and 21days, the physic-chemical properties of samples, including density and microhardness, evaluation of pH and weight loss of glasses in physiological fluid and cell cultural studies like cell viability, cytocompatability and cell proliferation by seeding rMSCs cells on the glass samples in order to throw some light on their structural properties. The results showed that, the density and Vickers hardness found to be increased with theincrease in content of alumina due to the slight increase in the number of octahedrally coordinated Al3+ ions and stronger ionic cross linkages due to insertion of Al3+ ions between phosphate networks. The initial rise in pH and controlled solubility in SBF strongly supports the apatite layer development. The growth of the rMSCs cells on all samples showing good cytocompatability and proliferation up to 6 mol% Al2O3 after that decreases slightly with an increase in alumina content due to network forming action of Al3+ ions in zinc phosphate based glasses. The results confirmed the suitability of these glasses for clinical trials towards bone repair and regeneration resorbable implants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    4
    Citations
    NaN
    KQI
    []