SWI3B and HDA6 Interact and Are Required for Transposon Silencing in Arabidopsis

2020 
Although the interplay of covalent histone acetylation/deacetylation and ATP-dependent chromatin remodelling is crucial for the regulation of chromatin structure and gene expression in eukaryotes, the underlying molecular mechanism in plants remains largely unclear. Here we show a direct interaction between Arabidopsis SWI3B, an essential subunit of the SWI/SNF chromatin-remodelling complex, and the RPD3/HDA1-type histone deacetylase HDA6 both in vitro and in vivo. Furthermore, SWI3B and HDA6 co-repress the transcription of a subset of transposons. Both SWI3B and HDA6 maintain transposon silencing by decreasing histone H3 lysine 9 acetylation, but increasing histone H3 lysine 9 di-methylation, DNA methylation and nucleosome occupancy. Our findings reveal that SWI3B and HDA6 may act in the same co-repressor complex to maintain transposon silencing in Arabidopsis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    15
    Citations
    NaN
    KQI
    []