Giant dipole resonance parameters from photoabsorption cross-sections

2019 
The structural effect is believed to have no influence on the decay properties of medium and heavy-mass nuclei at excitation energies above the pairing gap. These properties can be described by statistical properties using so-called photon strength functions for different multipolarities, and directly related to the photoabsorption cross-section ( \begin{document}$\sigma_{\rm abs}$\end{document} ). \begin{document}$\sigma_{\rm abs}$\end{document} is dominated by the electric giant dipole resonance at \begin{document}$\gamma$\end{document} energy \begin{document}$\epsilon_\gamma \leqslant 40$\end{document} MeV. In this study, we construct two kinds of systematic giant dipole resonance parameters by fitting the experimental photoabsorption cross-sections. One is based on the microscopic relativistic quasiparticle random phase approximation approach, whereas the other is estimated by the phenomenological models within the Lorentzian representation. Both of them are demonstrated ot efficiently describe the experimental photoabsorption cross-sections available for medium to heavy-mass nuclei, and they can obtain more reliable predictions for the unknown nuclear system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []