Transcatheter Mitral Valve Replacement: A Novel Anchor Technology

2021 
Background Mitral valved stents tend to migrate or to develop paravalvular leakage due to high–left ventricular pressure in this cavity. Thus, this study describes a newly developed mitral valved stent anchoring technology. Methods Based on an existing mitral valved stent, four anchoring units with curved surgical needles were designed and fabricated using three-dimensional (3D) software and print technology. Mitral nitinol stents assembled with four anchoring units were successively fixed on 10 porcine annuli. Mechanical tests were performed with a tensile force test system and recorded the tension forces of the 10 nitinol stents on the annulus. Results The average maximum force was 28.3 ± 5.21 N, the lowest was 21.7 N, and the highest was 38.6 N until the stent lost contact with the annulus; for the break force (zero movement of stent from annulus), the average value was 18.5 ± 6.7 N with a maximum value of 26.9 N and a minimum value of 6.07 N. It was additionally observed that the puncture needles of the anchoring units passed into the mitral annulus in all 10 hearts and further penetrated the myocardium in only one additional heart. The anchoring units enhanced the tightness of the mitral valved stent and did not destroy the circumflex coronary artery, coronary sinus, right atrium, aortic root, or the left ventricular outflow tract. Conclusion The new anchoring units for mitral nitinol stents were produced with 3D software and printing technology; with this new type of anchoring technology, the mitral valved stent can be tightly fixed toward the mitral annulus.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    0
    Citations
    NaN
    KQI
    []