Bioenergy Yields from Sequential Bioethanol and Biomethane Production: An Optimized Process Flow

2019 
This study investigates the potential of different stages of the bioethanol production process (pretreatment, hydrolysis, and distillation) for bioethanol and biomethane production, and studies the critical steps for the liquid and the solid fractions to be separated and discarded to improve the efficiency of the production chain. For this, Napier grass (a fast-growing grass) from Effurun town of Delta State in Nigeria was used and the novel pretreatment method, nitrogen explosive decompression (NED), was applied at different temperatures. The results show that the lowest glucose (13.7 g/L) and ethanol titers (8.4 g/L) were gained at 150 °C. The highest glucose recovery (31.3 g/L) was obtained at 200 °C and the maximum ethanol production (10.3 g/L) at 170 °C. Methane yields are higher in samples pretreated at lower temperatures. The maximum methane yields were reported in samples from the solid fraction of post-pretreatment (pretreated at 150 °C, 1.13 mol CH4/100 g) and solid fraction of the post-hydrolysis stage (pretreated at 150 °C, 1.00 mol CH4/100 g). The lowest biomethane production was noted in samples from the liquid fraction of post-pretreatment broth (between 0.14 mol CH4/100 g and 0.24 mol CH4/100 g). From the process point of view, samples from liquid fraction of post-pretreatment broth should be separated and discarded from the bioethanol production process, since they do not add value to the production chain. The results suggest that bioethanol and biomethane concentrations are influenced by the pretreatment temperature. Napier grass has potential for bioethanol and further biomethane production and it can be used as an alternative source of energy for the transportation sector in Nigeria and other countries rich in grasses and provide energy security to their population.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    7
    Citations
    NaN
    KQI
    []