Tumour growth and drug resistance: an evolutionary view with perspectives in therapeutics

2016 
BACKGROUND Drug-induced drug resistance in cancer has been attributed to diverse biological mechanisms at the individual cell or cell population scale, relying on stochastically or epigenetically varying expression of phenotypes at the single cell level, and on the adaptability of tumours at the cell population level. SCOPE OF THIS REVIEW We focus on intra-tumour heterogeneity, namely between-cell variability within cancer cell populations, to account for drug resistance. To shed light on such heterogeneity, we review evolutionary mechanisms that encompass the great evolution that has designed multicellular organisms, as well as smaller windows of evolution on the time scale of human disease. We also present mathematical models used to predict drug resistance in cancer and optimal control methods that can circumvent it in combined therapeutic strategies. MAJOR CONCLUSIONS Plasticity in cancer cells, i.e., partial reversal to a stem-like status in individual cells and resulting adaptability of cancer cell populations, may be viewed as backward evolution making cancer cell populations resistant to drug insult. This reversible plasticity is captured by mathematical models that incorporate between-cell heterogeneity through continuous phenotypic variables. Such models have the benefit of being compatible with optimal control methods for the design of optimised therapeutic protocols involving combinations of cytotoxic and cytostatic treatments with epigenetic drugs and immunotherapies. GENERAL SIGNIFICANCE Gathering knowledge from cancer and evolutionary biology with physiologically based mathematical models of cell population dynamics should provide oncologists with a rationale to design optimised therapeutic strategies to circumvent drug resistance, that still remains a major pitfall of cancer therapeutics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    1
    Citations
    NaN
    KQI
    []