Convergent changes in muscle metabolism depend on duration of high-altitude ancestry across Andean waterfowl.

2020 
High-altitude environments require that animals meet the metabolic O2 demands for locomotion and thermogenesis in O2-thin air, but the degree to which convergent metabolic changes have arisen across independent high-altitude lineages or the speed at which such changes arise is unclear. We examined seven high-altitude waterfowl that have inhabited the Andes (3812-4806m elevation) over varying evolutionary time scales, to elucidate changes in biochemical pathways of energy metabolism in flight muscle relative to low-altitude sister-taxa. Convergent changes across high-altitude taxa included increased hydroxyacyl-coA dehydrogenase and succinate dehydrogenase activities, decreased lactate dehydrogenase, pyruvate kinase, creatine kinase, and cytochrome c oxidase activities, and increased myoglobin content. ATP synthase activity increased in only the longest established high-altitude taxa, whereas hexokinase activity increased in only newly established taxa. Therefore, changes in pathways of lipid oxidation, glycolysis, and mitochondrial oxidative phosphorylation are common strategies to cope with high-altitude hypoxia, but some changes require longer evolutionary time to arise.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []