Continuous Particle Swarm Optimization-Based Deep Learning Architecture Search for Hyperspectral Image Classification

2021 
Deep convolutional neural networks (CNNs) are widely used in hyperspectral image (HSI) classification. However, the most successful CNN architectures are handcrafted, which need professional knowledge and consume a very significant amount of time. To automatically design cell-based CNN architectures for HSI classification, we propose an efficient continuous evolutionary method, named CPSO-Net, which can dramatically accelerate optimal architecture generation by the optimization of weight-sharing parameters. First, a SuperNet with all candidate operations is maintained to share the parameters for all individuals and optimized by collecting the gradients of all individuals in the population. Second, a novel direct encoding strategy is devised to encode architectures into particles, which inherit the parameters from the SuperNet. Then, particle swarm optimization is used to search for the optimal deep architecture from the particle swarm. Furthermore, experiments with limited training samples based on four widely used biased and unbiased hyperspectral datasets showed that our proposed method achieves good performance comparable to the state-of-the-art HSI classification methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    6
    Citations
    NaN
    KQI
    []