The rational design of biomass-derived carbon materials towards next-generation energy storage: A review

2020 
Abstract The efficient storage of electricity generated from clean energy can help liberate human beings from the shackles of fossil fuel shortage. As the existing energy storage systems are becoming close to their theoretical energy limitation, the development of next-generation energy storage is of great necessity. Carbon materials are one of the most versatile materials that play a key role in different energy storage devices because their outstanding properties like high conductivity and porosity can fulfill various requirements of energy storage devices. Most high-performance carbon materials, however, are extracted from fossil fuel by energy-intensive synthetic methods. Here comes an urgent need to reduce the production cost of carbon materials while maintaining their properties. Biomass is a promising renewable precursor of functional carbon materials for the next-generation energy storage system, on account of its abundance, sustainability, intriguing microstructures and low cost. Various carbon materials have been engineered from natural and renewable biomass resources by suitable activation and surface modification processes. As a result, their specific surface area, pore size distribution, porosity, surface chemistry and morphology have been rationally tuned and tailored to boost their electrochemical performance. In this review, the most updated research progress in the synthesis of biomass-derived carbon material for developing high-performance supercapacitors, rechargeable batteries and fuel cells are critically reviewed and summarized. For their practicability, several challenges that remain to be addressed are analyzed, and a perspective to the future research on biomass-derived carbons for energy storage is also discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    247
    References
    25
    Citations
    NaN
    KQI
    []