Asymmetric angular dependence of spin-transfer torques in CoFe/Mg-B-O/CoFe magnetic tunnel junctions

2016 
Using a first-principles noncollinear wave-function-matching method, we studied the spin-transfer torques (STTs) in CoFe/Mg-B-O/CoFe(001) magnetic tunnel junctions (MTJs), where three different types of B-doped MgO in the spacer are considered, including B atoms replacing Mg atoms (Mg3BO4), B atoms replacing O atoms (Mg4BO3), and B atoms occupying interstitial positions (Mg4BO4) in MgO. A strong asymmetric angular dependence of STT can be obtained both in ballistic CoFe/Mg3BO4 and CoFe/Mg4BO4 based MTJs, whereas a nearly symmetric STT curve is observed in the junctions based on CoFe/Mg4BO3. Furthermore, the asymmetry of the angular dependence of STT can be suppressed significantly by the disorder of B distribution. Such skewness of STTs in the CoFe/Mg-B-O/CoFe MTJs could be attributed to the interfacial resonance states induced by the B diffusion into MgO spacer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    0
    Citations
    NaN
    KQI
    []