Non-zero-sum microbiome immune system interactions.

2021 
Fundamental asymmetries between the host and its microbiome in enzymatic activities and nutrient storage capabilities have promoted mutualistic adaptations on both sides. As a result, the enteric immune system has evolved so as not to cause a zero-sum sterilization of non-self, but rather achieve a non-zero-sum self-reinforcing cooperation with its evolutionary partner the microbiome. In this review we attempt to integrate the accumulated knowledge of immune - microbiome interactions into an evolutionary framework and trace the pattern of positive immune - microbiome feedback loops across epithelial, enteric nervous system, innate and adaptive immune circuits. Indeed, the immune system requires commensal signals for its development and function, and reciprocally protects the microbiome from nutrient shortage and pathogen outgrowth. In turn, a healthy microbiome is the result of immune system curatorship as well as microbial ecology. The paradigms of host-microbiome asymmetry and the cooperative nature of their interactions identified in the gut are applicable across all tissues influenced by microbial activities. Incorporation of immune system influences into models of microbiome ecology will be a step forward towards defining what constitutes a healthy human microbiome and guide discoveries of novel host-microbiome mutualistic adaptations that may be harnessed for promotion of human health. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    200
    References
    1
    Citations
    NaN
    KQI
    []