Chitosan-stablized bovine serum albumin nanoparticles having ability to control the release of NELL-1 protein

2018 
Abstract The study was designed to prepare and evaluate chitosan stabilized-albumin nanoparticles as NELL-1 protein carriers(Chi/NNPs). The Chi/NNPs were prepared by desolvation method and then stabilized by chitosan through electrostatic interaction. The Chi/NNPs were characterized for drug loading efficiency, surface morphology, particle size, surface charge. Fluorescein isothiocyanate-labeled chitosan was used to confirm the homogeneity of chitosan coating on the BSA nanoparticles. The NELL-1 bioactivity of Chi/NNPs and the release kinetics were investigated in vitro. It was observed that the mean particle size with chitosan (0.075 wt%,0.15 wt%, 0.3 wt%, respectively) and the surface charge were 368.663 ± 15.470 nm, 382.881 ± 18.767 nm, 390.480 ± 11.465 nm and +25.03 ± 1.42 mV, +30.27 ± 1.80 mV, +31.03 ± 2.05 mV respectively. Drug entrapment efficiency ranged from 87.83% to 89.30%. The Chi/NNPs prepared with the 0.15 wt% chitosan were able to successfully control the release of NELL-1 and maintain a sustained release for up to 8 days. Furthermore, more than 82.67 ± 8.74% of the loaded protein’s bioactivity was preserved in Chi/NNPs over the period of the investigation. Our findings suggest that Chi/NNPs as promising protein delivery nanocarriers have the ability to maintain sustained release kinetics and to preserve the bioactivity of released NELL-1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    9
    Citations
    NaN
    KQI
    []