A novel hybrid predictive maintenance model based on clustering, smote and multi-layer perceptron neural network optimised with grey wolf algorithm

2021 
Considering the complexities and challenges in the classification of multiclass and imbalanced fault conditions, this study explores the systematic combination of unsupervised and supervised learning by hybridising clustering (CLUST) and optimised multi-layer perceptron neural network with grey wolf algorithm (GWO-MLP). The hybrid technique was meticulously examined on a historical hydraulic system dataset by first, extracting and selecting the most significant statistical time-domain features. The selected features were then grouped into distinct clusters allowing for reduced computational complexity through a comparative study of four different and frequently used categories of unsupervised clustering algorithms in fault classification. The Synthetic Minority Over Sampling Technique (SMOTE) was then employed to balance the classes of the training samples from the various clusters which then served as inputs for training the supervised GWO-MLP. To validate the proposed hybrid technique (CLUST-SMOTE-GWO-MLP), it was compared with its distinct modifications (variants). The superiority of CLUST-SMOTE-GWO-MLP is demonstrated by outperforming all the distinct modifications in terms of test accuracy and seven other statistical performance evaluation metrics (error rate, sensitivity, specificity, precision, F score, Mathews Correlation Coefficient and geometric mean). The overall analysis indicates that the proposed CLUST-SMOTE-GWO-MLP is efficient and can be used to classify multiclass and imbalanced fault conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    115
    References
    1
    Citations
    NaN
    KQI
    []