LANDAU-ZENER TRANSITIONS IN THE PRESENCE OF SPIN ENVIRONMENT

2009 
We study the effect of an environment consisting of noninteracting two level systems on Landau-Zener transitions with an interest on the performance of an adiabatic quantum computer. We show that if the environment is initially at zero temperature, it does not affect the transition probability. An excited environment, however, will always increase the probability of making a transition out of the ground state. For the case of equal intermediate gaps, we find an analytical upper bound for the transition probability in the limit of large number of environmental spins. We show that such an environment will only suppress the probability of success for adiabatic quantum computation by at most a factor close to 1/2.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    5
    Citations
    NaN
    KQI
    []