Iron Removal in Aluminum Melts Containing Scrap by Electromagnetic Stirring

2010 
Excessive iron in aluminum melt produces needle-shaped beta-AlFeSi intermetallic compounds during solidification. The presence of beta-AlFeSi intermetallic compounds can be harmful in the extrusion process because of the high pressure. As a common process, those compounds change from the needle-shaped to the globular-shaped alpha-AlFeMnSi intermetallic compounds through the addition of manganese to the aluminum melt. Those phases settle down during the solidification process, and then such is cut. Note, however, that the efficiency of iron elimination is very low. Our previous study reported that EMS can help the alpha-AlFeMnSi intermetallic compounds form easier and faster and settle down at the bottom of the aluminum melt through the centrifugal force of EMS. To investigate the effect on the efficiency of iron elimination in aluminum melt scrap, EMS current, holding temperature, and time of melt as well as the ratio of manganese to iron were controlled. As a result of this study, lower holding temperature and longer holding time of aluminum melt make iron elimination in aluminum melt more efficient with induced EMS. The best efficiency of iron elimination in aluminum melt was 65.2%with EMS induced at 923k for 4 minutes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    5
    Citations
    NaN
    KQI
    []