Genetic polymorphisms in RNA binding proteins contribute to breast cancer survival.

2013 
The RNA-binding proteins TTP and HuR control expression of numerous genes associated with breast cancer pathogenesis by regulating mRNA stability. However, the role of genetic variation in TTP (ZFP36) and HuR (ELAVL1) genes is unknown in breast cancer prognosis. A total of 251 breast cancer patients (170 Caucasians and 81 African–Americans) were enrolled and followed up from 2001 to 2011 (or until death). Genotyping was performed for 10 SNPs in ZFP36 and 7 in ELAVL1 genes. On comparing both races with one another, significant differences were found for clinical and genetic variables. The influence of genetic polymorphisms on survival was analyzed by using Cox-regression, Kaplan-Meier analysis and the log-rank test. Univariate (Kaplan-Meier/Cox-regression) and multivariate (Cox-regression) analysis showed that the TTP gene polymorphism ZFP36*2 A > G was significantly associated with poor prognosis of Caucasian patients (HR = 2.03; 95% CI = 1.09–3.76; p = 0.025; log-rank p = 0.022). None of the haplotypes, but presence of more than six risk genotypes in Caucasian patients, was significantly associated with poor prognosis (HR=2.42; 95% CI = 1.17–4.99; p = 0.017; log-rank p = 0.007). The effect of ZFP36*2 A > G on gene expression was evaluated from patients' tissue samples. Both TTP mRNA and protein expression was significantly decreased in ZFP36*2 G allele carriers compared to A allele homozygotes. Conversely, upregulation of the TTP-target gene COX-2 was observed ZFP36*2 G allele carriers. Through its ability to attenuate TTP gene expression, the ZFP36*2 A > G gene polymorphism has appeared as a novel prognostic breast cancer marker in Caucasian patients.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    19
    Citations
    NaN
    KQI
    []