In Silico Elucidation of Deleterious Non-synonymous SNPs in SHANK3, the Autism Spectrum Disorder Gene.

2020 
SHANK3, a member of SH3 and multiple ankyrin repeat domains (SHANK) proteins, plays a crucial role in synaptic development and functions. Mutations in SHANK3 have been linked to a number of neuropsychiatric and neurodevelopmental disorders, including autism spectrum disorder. In this study, the functional and structural impacts of non-synonymous single-nucleotide polymorphisms (SNPs) on SHANK3 were predicted. Various databases were used to extract 16,894 non-redundant SNPs, out of which 1179 were annotated as missense variants. Missense variants were categorized as deleterious or non-deleterious. Twenty-nine missense variants were unanimously recognized as deleterious and subjected to structural and stability analyses. Mutations, including L47P, G54W, G172D, G250C/D, and G627E, which posed drastic effects on the secondary structure of SHANK3, were modeled. Stability analyses introduced L47P, G54W, and G250D as the most destabilizing mutations, thus they were subjected to molecular dynamics simulation. Simulation revealed significant changes in intramolecular interactions and high fluctuations in residues of 1-350 that significantly affect the ANK functional domain. G250C/D and G635R consensus deleterious mutations were found in the first and second binding domains of SHANK3, and none were found in the post-translational modification sites. This study suggests L47P, G54W, and G250C/D deleterious mutations as priorities for future studies on SHANK3.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []